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ABSTRACT

Achieving accurate storm-scale analyses and reducing the spinup time of modeled convection is a primary

motivation for the assimilation of radar reflectivity data. One common technique of reflectivity data assimilation

is using a cloud analysis, which inserts temperature and moisture increments and hydrometeors deduced from

radar reflectivity via empirical relations to induce and sustain updraft circulations. Polarimetric radar data have

the ability to provide enhanced insight into the microphysical and dynamic structure of convection. Thus far,

however, relatively little has been done to leverage these data for numerical weather prediction. In this study, the

Advanced Regional Prediction System’s cloud analysis is modified from its original reflectivity-based formu-

lation to providemoisture and latent heat adjustments based on the detection of differential reflectivity columns,

which can serve as proxies for updrafts in deepmoist convection and, subsequently, areas of saturation and latent

heat release. Cycledmodel runs using both the original cloud analysis and abovemodifications are performed for

two high-impact weather cases: the 19 May 2013 central Oklahoma tornadic supercells and the 25 May 2016

north-central Kansas tornadic supercell. The analyses and forecasts of convection qualitatively and quantita-

tively improve in both cases, including more coherent analyzed updrafts, more realistic forecast reflectivity

structures, a better correspondence between forecast updraft helicity tracks and radar-derived rotation tracks,

and improved frequency biases and equitable threat scores for reflectivity. Based on these encouraging results,

further exploration of the assimilation of dual-polarization radar data into storm-scale models is warranted.

1. Introduction

The assimilation of radar data into convective-scale

numerical weather prediction (NWP) models has gained

considerable attention in recent years with increased

operational implementation and use in the warning de-

cision process (e.g., the ‘‘Warn-on-Forecast’’ initiative;

Stensrud et al. 2009, 2013). Weather radar is one of the

only sources of data available that provides informa-

tion at a temporal and spatial resolution comparable to

convection-allowing NWP models. Thus, radar data as-

similation’s ability to promote deepmoist convection and

its attendant perturbations in NWPmodels and to reduce

the spinup time has been and continues to be explored.

However, most efforts to date have been limited to

measurements of reflectivity at horizontal polarization

(hereafter, Z) and radial velocity.

Manymethods of assimilatingZ have been studied over

the past two decades. One of the earliest methods exam-

ined was four-dimensional variational data assimilation

(4DVAR), which uses the forecast model as a dynamical

constraint during the assimilation process. While results

have been encouraging (e.g., Sun and Crook 1997, 1998;

Sun 2005; Sun and Zhang 2008; Wang et al. 2013b), the

difficulty of developing and maintaining an adjoint model

and the inherent nonlinearities of themicrophysics schemeCorresponding author: Jacob T. Carlin, jacob.carlin@noaa.gov
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often hinder proper convergence of the cost function. As

such, 4DVAR methods have not been widely used for

convective-scale radar data assimilation and have typically

been limited to warm rain microphysics, although recent

work has begun to investigate the inclusion of some ice

phases (Chang et al. 2016). The simpler and more compu-

tationally efficient three-dimensional variational data as-

similation (3DVAR) method has provided positive results

(e.g., Xiao et al. 2005, 2007; Gao and Stensrud 2012; Wang

et al. 2013a).However, 3DVAR lacks flow-dependent error

covariances, which may limit the ability to update un-

observed variables, and requires limiting assumptions about

the model microphysics. In recent years, the ensemble

Kalman filter method (EnKF; Evensen 1994) has become

increasingly popular for convective-scale radar data

assimilation with very promising results for producing ac-

curate storm-scale analyses (e.g., Dowell et al. 2004, 2011;

Tong and Xue 2005; Xue et al. 2006; Aksoy et al. 2009;

Yussouf andStensrud2010; Snooket al. 2011, 2012;Yussouf

et al. 2013; Wheatley et al. 2015). However, ensemble

methods are computationally expensive, may suffer from

issues related to rank deficiency (e.g., filter divergence due

to sampling errors; Gao et al. 2014), and have not yet seen

widespread operational implementation. Hybrid methods

combining the strengths of variational and ensemble

methods by defining ensemble-derived flow-dependent

covariances for the variational scheme are being developed

(e.g., Wang et al. 2008a,b) and investigated for use with

radar data assimilation at the convective scale (e.g., Gao

et al. 2013, 2016; Gao and Stensrud 2014).

Other assimilation techniques assimilate state variables

indirectly retrieved fromZ. Thesemethods include latent

heating nudging (e.g., Jones and Macpherson 1997;

Macpherson 2001; Leuenberger and Rossa 2007; Stephan

et al. 2008), specific humidity nudging (Davolio andBuzzi

2004), and divergence nudging (Korsholm et al. 2015), as

well as techniques that use regions of observed Z to

activate a convective parameterization scheme (Rogers

et al. 2000) or variationally assimilate retrieved relative

humidity profiles (Caumont et al. 2010). One of the most

prominent methods is the Advanced Regional Prediction

System’s (ARPS) cloud analysis (hereafter ‘‘cloud anal-

ysis’’; Zhang et al. 1998; Zhang 1999; Brewster 2002;

Hu et al. 2006a). The cloud analysis is based on the

Local Analysis Prediction System (Albers et al. 1996)

and makes adjustments to the model relative humidity,

hydrometeor mixing ratios, and temperature based on

radar, satellite, and surface observation data. Cloud

analysis techniques are conceptually straightforward,

computationally efficient, and have been shown to be

useful for reducing the spinup of observed storms and

improving short-term convective forecasts (e.g., Xue

et al. 2003, 2014; Souto et al. 2003; Dawson andXue 2006;

Hu et al. 2006a; Zhao and Xue 2009; Schenkman et al.

2011; Dawson et al. 2015; Zhuang et al. 2016). Benefits

can be amplified when the cloud analysis is used in con-

junction with radial velocity information. To update

multiple unobserved model variables from Z alone,

however, cloud analysis techniques rely on semiempiri-

cal quantitative relations (e.g., retrieving hydrometeor

mixing ratios from Z) and general rules relating Z to

the aforementioned variables (e.g., saturating regions

within a given Z threshold). These relations and rules

require simplifications that can introduce errors (e.g.,

Gao et al. 2009; Carlin et al. 2016).

The operational WSR-88D network in the United

States has been upgraded to dual-polarization, with

other countries, including Germany, Canada, and the

United Kingdom, following suit. These networks now

provide an unprecedented volume of polarimetric

observations. In contrast to single-polarization radars,

dual-polarization radars transmit and receive orthogo-

nally polarized electromagnetic waves from which in-

formation about a target’s size, shape, orientation, and

composition can be garnered (e.g., Kumjian 2013a). In

addition to Z, measured variables include differential

reflectivity ZDR, copolar correlation coefficient rhv, and

differential phase shift FDP. Dual-polarization radar

data have been successfully leveraged to improve at-

tenuation correction (e.g., Bringi et al. 1990; Testud

et al. 2000; Snyder et al. 2010), quantitative precipitation

estimation (e.g., Zrnić andRyzhkov 1996; Ryzhkov et al.

2005a; Tabary et al. 2011), hydrometeor classification

(e.g., Park et al. 2009), tornado detection (e.g., Ryzhkov

et al. 2005b; Schultz et al. 2012a,b; Bodine et al. 2013,

2014; Van Den Broeke and Jauernic 2014; Snyder and

Ryzhkov 2015), and the identification (e.g., Heinselman

and Ryzhkov 2006) and size discrimination (e.g.,

Ryzhkov et al. 2013a,b) of hail. For further review of

weather radar polarimetry, see Zrnić and Ryzhkov

(1999), Bringi and Chandrasekar (2001), and Kumjian

(2013a,b,c).

In recent years, numerous distinct polarimetric ‘‘sig-

natures’’ have been identified and tied to dynamical and

microphysical processes within storms. One of the most

ubiquitous polarimetric signatures observed in deep

moist convection is the ZDR column. Differential re-

flectivity columns are vertical protrusions of positive

ZDR above the environmental 08C level and are in-

dicative of wet ice particles and oblate, supercooled

raindrops in the process of freezing being lofted by the

updraft. Values ofZDR within these columns can exceed

4 dB at S band (radar wavelengths of approximately

10 cm) and can reach beyond 3 km above the 08C level in

extreme cases (Kumjian et al. 2014; Snyder et al. 2015).

Because ZDR columns are associated with convective
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storm updrafts, they can theoretically be used as iden-

tifiers for regions of positive temperature perturbations

from latent heat release due to condensation and/or

freezing. Although the connection between ZDR col-

umns and updraft location has been long known (e.g.,

Hall et al. 1984; Illingworth et al. 1987; Tuttle et al. 1989;

Ryzhkov et al. 1994), recent work has begun to in-

vestigate the relationship between ZDR columns and

updraft intensity. Simulations in Kumjian et al. (2014)

showed a relationship between ZDR column depth (i.e.,

the distance above the 08C level that enhanced values of

ZDR extend within the column) and updraft strength.

Both Picca et al. (2010) and Kumjian et al. (2014)

showed a correlation between ZDR column height and

hail mass at the surface at appreciable lag times, which

has the potential to provide increased lead time for

forecasting hail at the surface as compared to traditional

metrics such as 20-dBZ echo-top height.

In addition to the aforementioned ZDR columns as-

sociated with mature updrafts, enhanced ZDR coinci-

dent with low values of Z has been observed aloft

in the nascent stages of developing convection (e.g.,

Illingworth et al. 1987; Knight 2006) due to the rapid

size sorting of initial precipitation particles (Picca et al.

2017). While technically distinct from ZDR columns,

these bursts of enhanced ZDR aloft in the updraft may

prove useful for identifying developing updrafts. For

the sake of simplicity, both of these phenomena will be

referred to as ‘‘ZDR columns.’’ For a more complete

review of ZDR columns, see Kumjian et al. (2014) and

Snyder et al. (2015).

Despite the connection between dual-polarization

radar and the microphysical and thermodynamic char-

acteristics of deep moist convection, leveraging polari-

metric data for NWP is a relatively new area of research.

Predicated on the idea that a physically accurate mi-

crophysics scheme should be able to reproduce realistic

polarimetric signatures, many studies have explored the

use of polarimetric radar forward operators (e.g., Jung

et al. 2008a, 2010a; Pfeifer et al. 2008; Ryzhkov et al.

2011) to evaluate the performance of microphysics

schemes (e.g., Jung et al. 2008a, 2010a, 2012; Ryzhkov

et al. 2011, 2013a; Kumjian and Ryzhkov 2012; Dawson

et al. 2013, 2014; Kumjian et al. 2014; Putnam et al. 2014;

Johnson et al. 2016; Snyder et al. 2017a,b). If large dis-

crepancies are present between the model-derived po-

larimetric signatures and those observed in nature, it can

be indicative of deficiencies in the microphysics scheme.

Alternatively, if a model faithfully reproduces polari-

metric signatures as they are observed in nature, the

model can be used to investigate what physical processes

are responsible for a given signature. Some studies have

used polarimetric data to assimilate improved estimates

of rainwater mixing ratio using both 3DVAR (Li and

Mecikalski 2010, 2012) and EnKF (Yokota et al. 2016)

methods and found positive impacts compared to ex-

periments that assimilated mixing ratios retrieved from

Z alone. However, ice phases were neglected. Wu et al.

(2000) attempted to use ZDR to differentiate between

liquid and ice phases for hydrometeor mass retrievals

using 4DVAR but found little success attributed to in-

adequate model physics. Few studies have attempted to

directly assimilate polarimetric data. Using an EnKF

framework, simulated polarimetric data were assimi-

lated in addition to Z to estimate state variables (Jung

et al. 2008a,b) and microphysical parameters (Jung et al.

2010b), with positive impacts found in both cases. As-

similating observed polarimetric data remains difficult

because of data quality concerns and uncertainties in

polarimetric operators.

This study explores the impact of assimilating ob-

served polarimetric data through a modified cloud

analysis routine. The cloud analysis technique was cho-

sen because of its proven success in reducing spinup time

and ease of implementation into existing code infra-

structure. Direct insertion of the retrieved temperature

and moisture perturbations is currently more straight-

forward than assimilating the polarimetric variables

using variational techniques, which require cross co-

variances between model state variables and the polar-

imetric variables that are not currently well formulated.

Section 2 details the modifications made to the existing

cloud analysis routine, and section 3 describes the ex-

perimental setup used in this study. Results are pre-

sented in section 4, followed by a summary and

discussion in section 5.

2. Description of data assimilation routine

a. ARPS 3DVAR routine

The first step of the assimilation cycling procedure

makes use of the ARPS 3DVAR routine (Gao et al.

2004; Hu et al. 2006b). ARPS 3DVAR minimizes a cost

function with a recursive filter containing terms for the

background and observations as well as an anelastic

mass continuity term as a weak constraint to produce a

more balanced three-dimensional analysis of the model

state variables frommultiple data sources. The system is

designed to work with a number of observation types

including surface and upper-air observations and radial

velocity. As it was designed for use at the storm scale,

the routine includes multiple analysis passes with vary-

ing scales of spatial influence to help resolve flows at

different scales. The resultant analysis is then used as the

background when invoking the cloud analysis routine.
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b. Existing cloud analysis

In the current cloud analysis, the radar data are first

quality controlled and interpolated to the model grid

(Brewster et al. 2005; Brewster and Stratman 2015).

The process for the polarimetric variables follows

that of radial velocity and Z. Radar data at ranges be-

tween 3 and 230 km from the radar site are processed.

Anomalous propagation is removed using gradients

and texture fields of Z and low wind speeds, with addi-

tional filtering of nonmeteorological echoes using a

user-defined rhv threshold (default of 0.85 for S band).

All variables are smoothed using a nine-point median

filter. Specific differential phase shift KDP is calculated

fromFDP from a local least squares fit on smoothed data

using a Z-dependent averaging window. Remapping to

the model grid of all radar variables is performed using a

least squares fit to a local polynomial function, which

thins the data near the radar and interpolates it at dis-

tances far from the radar (Brewster et al. 2005). For the

latest changes to the cloud analysis, see Brewster and

Stratman (2015).

An initial cloud fraction field is diagnosed from the

background relative humidity field following a similar

approach as Koch et al. (1997). Subsequently, clouds are

directly inserted by setting the cloud fraction to 100%

above the surface-based lifted condensation level any-

where Z exceeds a threshold, set to 15dBZ above 2 km

by default. Cloud water and ice content can be de-

termined either adiabatically or, as in this case, using the

Smith–Feddes model (Haines et al. 1989) with a re-

duction for entrainment following Hu et al. (2006a).

Next, the dominant hydrometeor species in each grid

box is determined using temperature and Z thresholds,

where snow (rain) is considered when the temperature is

below (above) 08C, and where hail is considered when

the Z exceeds 45 dBZ (Albers et al. 1996; Pan et al.

2016). In the case of cycling, the species can also be

determined by the existing species in the model back-

ground. The mixing ratios of each species are then typ-

ically retrieved using single-moment retrieval equations

for rain, snow, and hail based on Smith et al. (1975) and

Lin et al. (1983). Summaries of these equations can be

found in Dowell et al. (2011), Carlin et al. (2016), and

Pan et al. (2016). However, recent work has initialized

intercept parameters (and, if needed, shape parameters)

for multimoment microphysics schemes using iterative

techniques (Brewster and Stratman 2015), while other

studies have found positive impacts from using single-

moment microphysics schemes with intercept parame-

ters diagnosed from hydrometeor mixing ratios (e.g.,

Wainwright et al. 2014; Pan et al. 2016), as developed in

Zhang et al. (2008).

A temperature adjustment is thenmade to account for

latent heat release. This can be done by simply adding

the latent heating associated with the added cloud water

and ice content (Zhang et al. 1998) or by assuming a

moist-adiabatic temperature profile from cloud base

with entrainment effects included (Brewster 2002). In

this study, the latter method is applied to regions with

vertical velocity w . 20.2 m s21 (determined from the

3DVAR analysis) with a linear ramp from no heating to

full heating between w520.2 and 0.0 m s21. Final

moisture adjustments are made by reestablishing satu-

ration anywhere the Z threshold for clouds is exceeded

(incorporating the previously made temperature ad-

justment) or to 95% anywhere the analyzed hydrome-

teor mass is less than the background hydrometeor mass

to help avoid overmoistening. Further details of the

cloud analysis and its latest updates can be found in

Brewster and Stratman (2015) and Tong (2015).

c. Modified cloud analysis

The modifications made to the cloud analysis in this

study involve the final two steps of moistening and

heating in updraft areas. Many studies have shown that

both temperature perturbations (e.g., Hu et al. 2006a)

and the initial moisture field (e.g., Weygandt et al. 2002;

Ge et al. 2013) can play primary roles in determining the

accuracy of modeled convection. The insertion of too

much water vapor can result in an overestimate of the

intensity and areal coverage of convection, leading to a

degradation of the forecast (e.g., Schenkman et al. 2011;

Schenkman 2012). This issue was examined in detail

in Tong (2015), who found that saturating based on a

Z threshold can result in toomuchmoisture being added

and large degradations in forecast skill. Forecast skill

was greatly improved when a more accurate initial

moisture field was provided in an observing system

simulation experiment. Because of the lack of a direct

relationship between in-cloud moisture and conven-

tional observations, Tong (2015) proposed a modifica-

tion to the cloud analysis in which the relative humidity

in downdraft regions, which are generally unsaturated, is

reduced. Notable improvements were found for both the

analysis and forecast for all state variables examined,

further highlighting the importance of improving the

initial moisture field for convective storm-scale model-

ing. Despite these encouraging results, certain issues

remain. While unsaturated regions correspond well with

downdrafts overall, the specific quantitative relationship

between water vapor mixing ratio qy and w is unknown

and poorly constrained. In addition, even with a perfect

qy–w relationship, the success of this method relies on

an accurate model analysis of w, which is not always

known and/or guaranteed, particularly when few radars
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are available for assimilation. As an alternative to using

w, a method is proposed using ZDR columns to provide

adjustments to temperature and moisture in the cloud

analysis similar to the methods for assimilating lightning

data at the cloud scale put forth by Fierro et al. (2012,

2014, 2015) and Marchand and Fuelberg (2014).

To investigate the validity of the proposed modifica-

tions, vertical cross sections of relative humidity, latent

heating rate, ZDR, Z, and storm-relative winds from a

convective storm simulated by the Hebrew University

Cloud Model (HUCM) are shown in Fig. 1. The HUCM

is a two-dimensional nonhydrostatic cloud model with

spectral bin microphysics (Khain et al. 2004). Themodel is

coupled to a sophisticated polarimetric radar operator

(Ryzhkov et al. 2011)—at S band in this case—that has

been shown to recreate realistic polarimetric signatures in

deep moist convection (e.g., Ryzhkov et al. 2013a;

Kumjian et al. 2014; Snyder et al. 2015). The simulation

shown in Fig. 1 was initialized with a sounding from

a damaging hailstorm that struck Germany in 2006

(Noppel et al. 2010) and run with a 100-m vertical and

300-m horizontal grid spacing. The initial low-level cloud

condensation nuclei concentration was 3000cm23, repre-

senting polluted conditions. Throughout the lifetime of the

storm, the ZDR columns are coincident with updrafts fea-

turing deep plumes of saturation and with the region of

latent heating directly above the columns. Notably, the

area contained within the 15-dBZ contour is much more

extensive than the areas that are near or at saturation, with

large regions exhibiting subsaturation. It is clear that sat-

urating everywhere within the 15-dBZ threshold would

result in too much moisture being added to the system,

possibly inhibiting the formation of evaporation- or

sublimation-driven downdrafts. These results support the

conceptual model ofZDR columns and their use as proxies

for updrafts and subsequently areas of moistening and

heating. It should be noted, however, that while 15dBZ is

the default threshold for saturation in the cloud analysis, it

is an adjustable parameter and there is no agreed-upon Z

threshold to use. Other studies have addressed over-

moistening concerns by instead reducing the frequency of

applications of moistening (e.g., Schenkman et al. 2011).

FIG. 1. Vertical cross sections of simulated deep moist convection from the Hebrew University Cloud Model

showing relative humidity (shaded gray above 90%), the 100 K h21 latent heating rate contour (orange), the 1.0-dB

ZDR contour (red), the 15-dBZ Z contour (black), the environmental 08C level (blue), and storm-relative wind

vectors in the x–z plane (arrows).
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In this study, polarimetric data are first quality con-

trolled and mapped to the model grid as described in

section 2b. Areas of interest are limited to regions in

which Z $ 10 dBZ and rhv $ 0.85 to ensure sufficient

signal-to-noise ratio and good-quality data, and to re-

gions below the environmental 2208C level to mitigate

the chance of ice crystals with enhanced ZDR causing

false detections. Similar to the criteria used in Snyder

et al. (2015) for their ZDR column detection algorithm, a

ZDR column is defined here to exist if ZDR $ 1.0 dB for

at least two vertically contiguous grid boxes above the

environmental 08C level. To help ensure that only le-

gitimate ZDR columns are detected and limit the chance

of noise in the ZDR field causing false detections, an

additional 3 km 3 3 km horizontal mode filter is in-

corporated in which only columns exhibiting rhv $ 0.85

and 1.0 # ZDR # 5.0 dB in at least five of the nine grid

boxes within the filter are counted. A summary of these

detection criteria is shown in Table 1.

As opposed towarming in areaswithw.20.2ms21 as

in the existing cloud analysis, temperature adjustments

are instead made anywhere ZDR columns are detected.

Adjustments are made both where ZDR columns are lo-

cated and to one grid box surrounding the ZDR columns

to aid in establishing wide-enough updrafts that do not

mix out before becoming established. Similarly, instead

of saturating based on a simple Z criterion, saturation is

only applied to the model columns (within the cloud re-

gion as determined by Z) where ZDR columns have been

detected. Model columns surrounding detected ZDR

columns are also saturated, with the horizontal extent

proportional to the detected depth of the columns (in this

case, half the number of model levels in the detectedZDR

columns) to prevent the added moisture from mixing out

and to attempt to add more moisture for ‘‘stronger’’ (i.e.,

taller) ZDR columns. In addition to moistening and

heating at observed ZDR column locations, an additional

drying procedure is applied in an attempt to mitigate

possible overmoistening by the microphysics scheme. At

any locations satisfyingZ$ 10dBZ and relative humidity

$80% but with no detected ZDR column, the relative

humidity is reduced by half of the excess relative hu-

midity above 80% (e.g., if the relative humidity is 90%

with no ZDR column detected, the relative humidity is

reduced to 85%). This is, admittedly, an arbitrary process,

but remains a succinct way to provide minor drying to

areas characterized by precipitation (sufficient to meet

the Z $ 10-dBZ criterion) but that are outside of ZDR

columns (where, we hypothesize, deep updrafts are less

likely). Future work will attempt to examine the sensi-

tivity to theZDR column detection criteria and the details

of the filtering and weighting procedures for moistening

and drying.

An example of the differences in potential tempera-

ture and water vapor mixing ratio analysis increments

between the traditional cloud analysis and the modified

cloud analysis is shown in Fig. 2 for the initial 2000

UTC assimilation cycle of the 19 May 2013 Oklahoma

case (discussed below). While the magnitudes of the

moistening and warming are comparable, the location

and extent of the increments vary between the two.

The traditional cloud analysis (Fig. 2a) shows a large

area of moistening with two primary areas of warming

west-northwest of Oklahoma City associated with the

first developing supercell, and smaller areas of moist-

ening and warming northwest and west-southwest of

Oklahoma City. In contrast, the modified cloud analysis

employing detected ZDR columns (Fig. 2b) shows a

smaller area of moistening and warming directly west of

Oklahoma City, southwest of the area modified in the

traditional cloud analysis, and with little/no moistening

or warming elsewhere. The only exception is far south-

west of Oklahoma City, where the modified cloud

analysis shows a bit more moistening associated with

developing convection than the traditional cloud anal-

ysis. While the differences in analysis increments be-

tween the traditional and modified cloud analyses vary

with time, Fig. 2 provides a demonstrative example of

the typical differences between the methods.

3. Experimental setup

To investigate the impact of the modified cloud

analysis, two tornadic supercell events were studied: the

19 May 2013 tornado outbreak in central Oklahoma

(‘‘the OK case’’) and the tornadic supercell of 25 May

2016 in north-central Kansas (‘‘the KS case’’).

a. Case descriptions

Around 2000 UTC 19 May 2013, thunderstorms ini-

tiated near a dryline just west of the Oklahoma City,

Oklahoma, metropolitan area in an environment char-

acterized by strong vertical wind shear and high poten-

tial convective instability (i.e., CAPE). These storms

developed quickly, and the three supercells that

emerged from the convection moved toward the east-

northeast; two of the supercells produced a total of

TABLE 1. Summary of the criteria used to detect ZDR columns.

Variable Criteria

T 2208 # T # 08C
Z $10 dBZ

rhv $0.85

ZDR $1.0 dB with vertical continuity
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eight tornadoes, whereas the third supercell was not

tornadic. The northernmost supercell produced two

brief tornadoes north and northeast of Oklahoma City

before producing a long-lived tornado that produced

EF3 damage near Carney, Oklahoma, between 2141 and

2224 UTC that resulted in 4 injuries; the southern-

most supercell spawned a tornado that produced EF4

damage near Shawnee, Oklahoma, between 2300 and

2350 UTC that resulted in 2 fatalities and 10 injuries

(NWS 2017a).

In the KS case, an isolated supercell formed in north-

central Kansas just north of a warm front around 2200

UTC 25May 2016 andmoved slowly east-southeastward.

The storm produced a total of four tornadoes, including

a long-track tornado just east-northeast of Salina,Kansas,

that lasted over 1.5h (0007–0140 UTC) (NWS 2017b).

For both cases, observed tornado tracks are retrieved

from shapefiles created from damage survey reports.

b. Model setup

The model used in this study is the ARPS (Xue et al.

2000, 2001, 2003), a nonhydrostatic, compressible, nu-

merical model designed to function at multiple scales

with an emphasis on the explicit prediction of convec-

tion. Terrain data were derived from the U.S. Geo-

logical Survey 3-arc-s dataset. Subgrid-scale turbulence

was parameterized using a 1.5-order TKE turbulence

scheme, with the evolution of the planetary boundary

layer using the formulation of Sun and Chang (1986).

Cloud microphysics were parameterized using the

Milbrandt–Yau double-moment scheme (Milbrandt and

Yau 2005a,b), and both short- and longwave radiation

were parameterized using the NASA Goddard schemes

(Chou 1990, 1992). A two-layer force-restore soil model

based on Noilhan and Planton (1989) was used with

surface fluxes based on stability-dependent drag co-

efficients using surface temperature and volumetric water

content. More information about the full ARPS physics

suite can be found in Xue et al. (2001).

Experiments were conducted using a one-way nested

grid configuration. The parent domain has a size of

1200 km 3 1200 km with a horizontal grid spacing of

4 km, and the inner nest a size of 500 km3 500 kmwith a

horizontal grid spacing of 1 km. The domains for theOK

and KS cases were centered on 35.458N, 97.258W and

38.658N, 97.558W, respectively. Both nests used a

stretched vertical grid containing 53 vertical levels with

an average spacing of 400m and a minimum spacing of

100m near the surface. The model top was rigid with a

Rayleigh damping layer above 12 km to absorb verti-

cally propagating waves. Lateral boundary conditions

were externally forced. The simulated Z fields were

computed using the T-matrix-based algorithm of Jung

et al. (2010a). The domains used for each case are shown

in Fig. 3, and a summary of the model setup used for

these experiments is provided in Table 2.

FIG. 2. The 2000 UTC analysis increments of water vapor mixing ratio (shading, g kg21) and potential temper-

ature (black contours every 1 K) at approximately 5 km AGL for (a) the traditional cloud analysis and (b) the

modified cloud analysis for the 19 May 2013 Oklahoma case.

DECEMBER 2017 CARL IN ET AL . 5039

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/19/23 04:49 PM UTC



c. Assimilation procedures

The 12-km North American Mesoscale Forecast Sys-

tem (NAM) model analysis and forecast data were used

to initialize the parent domain. For the OK case, the

1800 UTC 19May 2013 NAM analysis was used, and for

the KS case the 2-h forecast from the 1800 UTC 25 May

2016 NAM analysis (valid at 2000 UTC) was used. The

NAM data were interpolated onto the 4-km ARPS grid,

which was then integrated forward for 1h using 3-h

lateral boundary conditions derived from the NAM.

This forecast was then further interpolated down to the

inner nest and integrated forward another 1 h, with

boundary conditions on the inner nest updated at 30-min

intervals from the outer nest, for a total spinup period of

2 h. This forecast was then used as the background for all

assimilation experiments performed.

Assimilation cycles were performed every 10 min fol-

lowing Hu and Xue (2007), who found this to be the op-

timal cycling frequency in their experiments. Radial

velocity data were assimilated using the ARPS 3DVAR

routine (Gao et al. 2004; Hu et al. 2006b), after which the

cloud analysis routine was called. For the OK case, Okla-

homa Mesonet data (Brock et al. 1995) were also assimi-

lated using the 3DVAR routine. After 30 min, a separate

1-h forecast was made, with 10-min assimilation cycles

continuing. Then 1-h forecasts were subsequently initiated

every 30-min for 3h after the initial analysis time. A dia-

gram of the spinup, cycling, and assimilation process is

shown in Fig. 4. For the OK case, radar data from the

Twin Lakes, Oklahoma, WSR-88D (KTLX) were used,

while the KS case used data from the Topeka, Kansas,

WSR-88D (KTWX) (Fig. 3). For each case, two runs were

performed: a control run (hereafter ‘‘Control’’), in which

the legacy cloud analysis is used (see section 2b), and an

experimental run (hereafter ‘‘ZDRCOL’’), which em-

ployed the modified polarimetric cloud analysis described

in section 2c.

Specific nomenclature for each experiment will be

referred to hereafter by their case and which cloud

analysis method was used (i.e., ‘‘KS_ZDRCOL’’ refers

to the 25 May 2016 KS case experiment employing the

modified cloud analysis).

4. Results

a. 19 May 2013 case

To investigate the performance of the ZDR column

detection algorithm, a composite plot of remapped 1-km

Z and analyzedZDR column depth from the KTLX radar

observations in 10-min intervals for the assimilation pe-

riod is shown inFig. 5. Each of the three swaths associated

with a supercell is labeled and will be used to reference

each storm in the subsequent discussions. The 15-dBZ

contour is shown as that is the default threshold for sat-

uration in the original cloud analysis routine. Distinct

ZDR column tracks are evident for all three main storms,

with all storms exhibiting prominentZDR columns during

their formative stages before becoming more intermit-

tent, supporting the use of ZDR columns for spinning up

storms in the model early in their life cycle. In each case,

the ZDR column is found on the southwest flank of the

storm where the main updraft is expected to be located.

FIG. 3. Model domains used for the (left) 19 May 2013 Oklahoma case and the (right) 25 May 2016 Kansas case.

The larger outer nest is shown in a thick black line, the inner nest is shown in a thin black line, and the zoomed-in

domain plotted in subsequent figures is shown with a dotted line. The radar site used for each case is labeled.
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The only exception to this is for the weakening and fast-

moving cell north of Oklahoma City that propagates to

the left of the mean wind off to the north-northeast. The

supercell that begins to the west of Oklahoma City

(‘‘Supercell 1’’ in Fig. 5) exhibits a large, deep ZDR

column from its inception that travels toward the

northeast and then turns to the east-northeast before

producing the first tornado. The ZDR column then

shrinks and becomes shallower near and after the first

tornado dissipates; the ZDR column associated with the

main updraft becomes more robust shortly after the

genesis of the second tornado east-northeast of Okla-

homa City, near the observed track. Two more ZDR

column tracks are apparent south of Oklahoma City,

with the middle track (‘‘Supercell 2’’) associated with

a smaller ZDR column as it tracked northeast. The

southernmost storm (‘‘Supercell 3’’) exhibited a larger

and taller ZDR column that suddenly weakened and

never fully reappeared. The period analyzed here ends

at 2300 UTC, the approximate start time of the long-

track southern tornado southeast of Oklahoma City.

However, no clear ZDR column is evident here due

to the close proximity of the updraft to the radar (i.e.,

the ZDR column likely was located within the cone of

silence, which extends 12 km from the radar at a height

of 4 km AGL), although additional obfuscation by hail

or tornadic debris cannot be ruled out. This is a known

drawback that should be taken into consideration when

using any methods that use vertically integrated data or

echo-top heights from a single radar.

The areas encompassed by the 15-dBZ threshold are

much larger and extend farther to the north and east of

the analyzed ZDR columns. Note that for this and all

subsequent figures for the OK case the two easternmost

tornadoes (shown in gray in Fig. 5) occurred after the

period examined in this experiment.

Composite plots of the maximum analyzed w (con-

toured at 30 m s21) at each grid point for both OK_

Control and OK_ZDRCOL through the assimilation

period (2000–2300 UTC) are shown in Fig. 6. OK_

Control exhibits a rather noisy w field composed of

many spurious updrafts, along with a pronounced

northward bias compared to the observed tornado

tracks. This northern and positive forward speed bias

has been observed inmany storm-scale modeling studies

(e.g., Potvin et al. 2014; Xue et al. 2014; Stratman and

Brewster 2015; Wheatley et al. 2015). In sharp contrast,

OK_ZDRCOL features much more consolidated up-

draft tracks that closely follow the analyzedZDR column

paths (and observed tornado tracks). As in Fig. 5, the

final analysis included is at 2300UTCnear the beginning

of the long-track tornado southeast of Oklahoma City,

evident with a large and strong updraft in excess of

40 m s21 near the start of the tornado track that is not

as apparent in OK_Control. The 30 m s21 contours

also appear to be larger in OK_ZDRCOL than in

OK_Control, suggesting wider, stronger updrafts.

The composited 1–6 km above ground level (AGL)

updraft helicity (Kain et al. 2008) swaths for three dif-

ferent forecast periods are shown in Fig. 7.Model output

was saved every 5 min and composited over the 1-h

forecast, with the maximum for the forecast period

shown at each grid point. The 1–6-km updraft helicity

provides a reasonable depiction of the path of mesocy-

clones and overall storm track. To aid in verifying the

forecast updraft helicity swaths, rotation tracks derived

from the Multi-Radar Multi-Sensor (MRMS; Smith

et al. 2016) system, which are composited maximum

values of radar-derived azimuthal shear (Smith and

Elmore 2004) in a layer through a given time period, are

included in Fig. 7. While the traditional azimuthal shear

product uses 0–2- or 3–6-km AGL layers, the 1–6-km

AGL azimuthal shear was used in this study to better

correspond with the 1–6-km updraft helicity derived

from the model output. The rotation tracks shown in

Fig. 7 correspond to the 1-h forecast periods shown in

each panel.

TABLE 2. Summary of ARPS model setup used for all experiments.

Model parameter

Value/description

Control ZDRCOL

Outer horizontal domain size 1200 3 1200

Outer horizontal grid spacing Dx5Dy5 4 km

Inner horizontal domain size 500 3 500

Inner horizontal grid spacing Dx5Dy5 1 km

Vertical grid spacing Stretched grid with mean Dz5
400m and minimum Dz5100m

across 53 levels

Time step 2 s

Physics Nonhydrostatic

Coriolis On

Computational mixing Fourth order

Lateral boundary conditions Externally forced

Upper boundary condition Rigid top with Rayleigh

damping layer at z5 12 000 m

Microphysics Milbrandt–Yau double-moment

scheme (Milbrandt and Yau

2005a,b)

Radiation NASA Goddard shortwave

and longwave schemes

(Chou 1990, 1992)

Surface Surface fluxes dependent on

stability, temperature,

and volumetric water content

Turbulence 1.5-TKE scheme with Sun and

Chang (1986) boundary

layer scheme

Cloud analysis Legacy Modified (see Table 1)

DECEMBER 2017 CARL IN ET AL . 5041

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/19/23 04:49 PM UTC



During the first 0–1-h forecast at 2030UTC (Figs. 7a,b),

both OK_Control and OK_ZDRCOL feature a storm

track for Supercell 1 that is located too far north. The

updraft helicity swath in OK_ZDRCOL, however, is

more consolidated and features a smaller northward

bias compared to OK_Control. Supercell 1 in OK_

ZDRCOL has a slower mean storm motion, with the

center of the updraft helicity swath covering approxi-

mately 10 fewer kilometers thanOK_Control during the

forecast period. Finally, OK_ZDRCOL features a weak

updraft helicity swath associated with the second de-

veloping storm (Supercell 2, southwest of Oklahoma

City) that is absent in the OK_Control run.

The improvements of OK_ZDRCOL over OK_

Control are most pronounced in the forecast initiated at

2130 UTC (Figs. 7c,d), approximately 10 min before the

start of the long-track tornado northeast of Oklahoma

City. OK_Control features multiple updraft helicity

swaths. There is no identifiable strong updraft helicity

swath coincident with the observed rotation track of

Supercell 1, with instead a very strong and prominent

updraft helicty swath displaced far to the northeast of

the observed rotation track and corresponding tor-

nado. Moreover, there are two notable updraft helicity

swaths corresponding to the weakening rotation track

of Supercell 2 southeast of Oklahoma City, with no

updraft helicity swath that clearly corresponds with the

rotation track for Supercell 3. In stark contrast, OK_

ZDRCOL captures the updraft helicty swath of Super-

cell 1 well, with the forecast swath nearly coincident with

the observed rotation track and with only a slight bias in

forward speed. It also correctly captures the updraft

helicity swath associated with Supercell 2 that weakens

as it moves to the northeast. Finally, the early develop-

ment of strong rotation in the southernmost supercell

(Supercell 3) that would go on to produce the Shawnee

tornado is depicted to the south of Oklahoma City while

being absent in OK_Control.

The 2230 UTC 0–1-h forecast (Figs. 7e,f) show many

of the same improvements. Both Supercells 1 and 2 were

nontornadic and beginning to weaken, with less pro-

nounced updraft helicity swaths in OK_ZDRCOL.

In contrast, OK_Control has strong but noisy updraft

helicity swaths for these storms displaced to the north-

east of their observed locations. For Supercell 3, both

OK_Control and OK_ZDRCOL exhibit updraft hel-

icity associated with the strong and broad observed

rotation track south of Oklahoma City. However,

the updraft helicity swath in OK_Control is primarily

north and east of the observed rotation track, while

FIG. 4. Diagram showing the spinup and assimilation cycles used for the (a) OK case and the

(b) KS case. ‘‘FX’’ represents forecasts, while ‘‘A’’ represents assimilation cycles encompassing

the ARPS 3DVAR1 Cloud Analysis routines. The 0–1-h forecasts initiated every 30 min are

denoted by red arrows. The dotted lines indicate a continuation of the 10-min assimilation

cycles in addition to the initiated 0–1-h forecast.
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OK_ZDRCOL captures the rotation (albeit with a slight

north bias) and its timing well.

To further examine the improvements in the OK_

ZDRCOL forecasts overOK_Control, the 1-kmAGLZ

is shown for the forecasts initiated at 2130 UTC in

20-min increments and compared to the observed radar

fields in Fig. 8. This time period represents the duration

of the northern long-track tornado northeast of Okla-

homa City, which was on the ground between 2141 and

2224 UTC, as well as the leadup period to the long-track

tornado produced by Supercell 3, which first touched

down at 2300 UTC. For both the OK_Control and OK_

ZDRCOL runs, an adjustment period is seen in the first

20 min (Figs. 8e,f) with small, yet intense, precipitation

cores (Z $ 65dBZ) present. These high values of Z

occur within the core of the middle and northern storms

(Supercells 1 and 2) in OK_Control (Fig. 8e), while in

OK_ZDRCOL these high Z values are predominantly

near the southern flank of the storms and/or within the

hook echoes, where the ZDR columns were analyzed.

Later in the forecast period (2210–2230 UTC), it is again

clear that the OK_Control run features a northward and

positive forward speed bias (Figs. 8h,k) compared to the

observations (Figs. 8g,j). Supercell 2 fails to remain

distinct, and by 2230 UTC unobserved banding features

are seen in the OK_Control run (Fig. 8k). The storms

are also larger than those observed, with large areal

coverage ofZ$ 45dBZ. In contrast, the OK_ZDRCOL

run is much closer to the observations. While a small

northeastward bias does still exist, the forecast storms

are in better agreement with the observations in terms of

size and position, with three distinct storms featuring

FIG. 5. Composited remapped Z (15-dBZ contour in gray) and

analyzed ZDR column depth (color shaded, in m, and defined as the

height of the 1.0-dB surface above the environmental 08C level)

between 2000 and 2300 UTC in 10-min intervals for the 19May 2013

case using the detection criteria listed in Table 1. Observed tornado

tracks are shown in black and gray, with gray tracks indicating ob-

served tornadoes that fall outside of the period of study.

FIG. 6. Compositedmaximumvertical velocity in each grid column for each of the postassimilation analyses from 2000

to 2300 UTC for the 19 May 2013 case for the (a) OK_Control case and (b) OK_ZDRCOL case, colored according to

their corresponding analysis time and showing the 30 m s21 vertical velocity contour line. Observed tornado tracks are

shown in black and gray, with gray tracks indicating observed tornadoes that fall outside of the period of study.
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FIG. 7. Composited 1–6-km AGL updraft helicity (m2 s22, red shading) at each grid point for (a),(c),(e) OK_

Control and (b),(d),(f) OK_ZDRCOL for the 0–1-h forecasts beginning at (a),(b) 2030; (c),(d) 2130; and (e),

(f) 2230 UTC. MRMS-derived 1–6-kmAGL rotation tracks (black contours, 0.01 s21 shown) are included for each

1-h period. The initial 1-km Z of each 1-h period is shown for reference (grayscale shading).
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FIG. 8. Plots of (left) observed 1-km AGL Z from KTLX remapped to the ARPS grid, and corresponding

forecasts from the (middle) OK_Control and (right) OK_ZDRCOL runs for the 0–1-h forecast beginning at 2130

UTC for the 19May 2013 case. Plots are shown for (a)–(c) the analysis at 2130UTC, (d)–(f) 20-min forecast at 2150

UTC, (g)–(i) 40-min forecast at 2210 UTC, and (j)–(l) 60-min forecast at 2230 UTC. Observed tornado tracks are

shown in black.
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identifiable hook echoes and broad supercellular fea-

tures present 1 h into the forecast (Fig. 8l).

Based on these encouraging qualitative results, the

equitable threat scores (ETS) and frequency biases were

computed for a quantitative look at the performance of

OK_Control and OK_ZDRCOL. The ETS, also known

as the Gilbert skill score (Gilbert 1884), is given by

ETS5
H2H

rdn

M1F1H2H
rdn

, (1)

where H is the number of hits, M is the number of

misses, F is the number of false alarms, and Hrdn is the

number of hits expected due to random chance, given by

H
rdn

5
(H1M)(H1F)

N
, (2)

where N is the total number of forecast points included

in the calculation. The ETS is calculated on a gridpoint

basis satisfying or exceeding a defined (here Z) thresh-

old, with a value of 1.0 indicating a perfect forecast and

0.0 indicating no forecast skill. The bias is calculated

from

Bias5
H1F

H1M
2 1 (3)

and provides a ratio of the number of forecast grids and

the number of observed grids exceeding a threshold,

normalized to zero. A bias of zero indicates no bias,

while a positive bias indicates an overestimate of Z

exceeding a threshold. Both the ETS and bias were

calculated for the composite Z at 20-, 30-, and 40-dBZ

thresholds and are shown for the OK case in Fig. 9. Note

that the ETS at the analysis time is not necessarily equal

to 1.0 due to both smoothing procedures and differences

in how Z is calculated: the observations are being com-

pared against simulated Z derived from a T-matrix code

for the single-species hydrometeor distribution that was

retrieved from the cloud analysis. The ETS for the

20-dBZ threshold (Fig. 9a) are comparable between the

two experiments, but notable improvements in ETS are

seen in OK_ZDRCOL over OK_Control for high Z

thresholds (Figs. 9c,e). The ETS for OK_ZDRCOL re-

mains superior for the entire 1-h duration of every

forecast, showing a noteworthy positive impact of ZDR

column assimilation. Both OK_Control and OK_

ZDRCOL exhibit generally positive biases that increase

with time at all threeZ thresholds. For all forecasts at all

times, however, OK_ZDRCOL features lower biases

(Figs. 9b,d,f). This tendency toward lower Z biases in

OK_ZDRCOL is also seen in 1-km Z for the 2130

UTC forecast (Fig. 8).

b. 25 May 2016 case

The KS case presents a somewhat more challenging

forecast scenario owing to a complex evolution of the

supercell and the greater distance between the super-

cell and the radar. After becoming mature, the main

supercell began moving slowly to the southeast. A new

storm developed to the southwest of the main super-

cell, which produced a left-moving supercell that

moved off to the north-northeast before merging with

the primary supercell. Additional convection also

formed along, and was absorbed into, the southern

flank of the forward-flank downdraft in the supercell.

This storm was farther away from the radar than the

storms in the OK case were (initiation occurred ap-

proximately 140 km away from the radar compared to

65 km away from the radar in the OK case), resulting

in a decrease of the quality of radar data available for

assimilation due to both decreased low-level coverage

and increasing radar resolution volume (’0.22 km3

at a 65-km range vs ’1.01 km3 at a 140-km range

for a 0.58 elevation angle). Additionally, in contrast to

the OK case, this case lacked the assimilation of

mesonet surface observations.

A long, continuous swath of ZDR columns are shown

for the duration of the period analyzed in the southwest

corner of the supercell where the main updraft is ex-

pected to be located (Fig. 10). The ZDR column’s width

and depth increases shortly before the start of the long-

track tornado northeast of Salina, and the ZDR column

remains broad and deep until the end of the tornado,

near the end of the assimilation period. A second ZDR

column swath is seen with the left split of the supercell

as it moves off to the north-northeast. This column

weakens near the end of the assimilation period, and the

storm weakened shortly thereafter. As in the OK case,

the easternmost tornado falls outside the analyzed pe-

riod for this case.

The composite plot of maximumw in the analyses for

the KS case shows many of the same improvements

documented in the OK case. The KS_Control case

shows a more disorganized and less coherent updraft

path, with many spurious updrafts to the north of the

main supercell path and observed tornado tracks

(Fig. 11a). Considering that the end of the assimilation

period is near the ending time of the long-track tor-

nado, the general progression of the analyzed updrafts

is also too fast. In contrast, KS_ZDRCOL features a

much more coherent updraft swath with a slower for-

ward motion to the east-southeast and a path closer to

the observed tornado track (Fig. 11b). KS_ZDRCOL

also features less spurious convection than KS_Control

in the central and southern parts of the domain.
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A comparison of 1–6-km updraft helicity with

MRMS-derived rotation tracks, similar to Fig. 7, is

shown for the KS case in Fig. 12. The forecasts selected

here were chosen to coincide with the long-track tor-

nado. In the forecast initiated at 2300UTC (Figs. 12a,b),

both KS_Control and KS_ZDRCOL produce a de-

veloping supercell north of Salina with an unorganized

updraft and an east-northeast motion. The observed

rotation tracks show only slight, messy rotation during

this period. Starker differences are apparent for the 0000

UTC forecast (Figs. 12c,d). KS_Control features a dis-

organized updraft helicity swath displaced far to the

north of the observed rotation track. In contrast,

KS_ZDRCOL features a consolidated updraft helicity

swath through the duration of the forecast period along

and just north of the observed rotation track, although a

slight slow bias in forward speed is apparent. These

same general patterns are also observed for the 0100

UTC forecast, with a noisy updraft helicity field too

far to the northeast in KS_Control; KS_ZDRCOL

exhibits a large, southeastward-directed updraft helicity

swath displaced slightly southwest of the observed

rotation track.

An example of observed and forecast Z for both KS_

Control and KS_ZDRCOL is shown in Fig. 13 for the

0000 UTC forecast. This 1-h period begins near the start

time of the primary long-track tornado and features a

complex evolution involving the secondary storm to the

FIG. 9. Equitable threat score and bias of composite Z at (a),(b) 20-; (c),(d) 30-; and (e),(f) 40-dBZ thresholds for

each of the 0–1-h forecasts for the OK case.

DECEMBER 2017 CARL IN ET AL . 5047

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/19/23 04:49 PM UTC



southwest splitting and merging with the main supercell

(Figs. 13a,d,g,j). As such, both KS_Control and KS_

ZDRCOL struggle to accurately predict the evolution of

the storm during this period. A very large and elongated

forward-flank downdraft not seen in the radar observa-

tions quickly develops and extends to the east-southeast

and east-northeast in KS_Control and KS_ZDRCOL,

respectively. This forward-flank precipitation appears to

stem from weak upper-level Z in the anvil in the ob-

servations. Despite this, KS_ZDRCOL features a more

realistic supercell structure 20-min into the forecast

(Fig. 13f) compared to KS_Control (Fig. 13e), with a

well-defined hook echo and rear-flank downdraft near

the observed tornado track. Neither KS_Control nor

KS_ZDRCOL clearly capture the left-splitting super-

cell. An erroneous region of moderate Z (i.e., 25–

35dBZ) within the inflow region of the supercell is also

seen in the KS_Control run (Fig. 13e) that is not seen

in the KS_ZDRCOL run. Both KS_Control and KS_

ZDRCOL generally feature Z values that are too

low (by 5–10dBZ) compared to observations outside of

the forward-flank downdraft. Overall, KS_ZDRCOL

features a slower and noticeably more accurate forecast

track of the hook echo than KS_Control (as also seen

Figs. 12c,d), as well as a more realistic looking hook

echo (Figs. 13i,l vs Figs. 13h,k).

Quantitatively, KS_ZDRCOL generally exhibits im-

provements over KS_Control with higher ETS scores

and lower biases, although the improvements in ETS

scores are more mixed than in the OK case, with lower

scores for the first two forecasts in the period (Fig. 14).

FIG. 11. Composited maximum vertical velocity in each grid column for each of the postassimilation analyses

from 2200 to 0100 UTC for the 25 May 2016 case for the (a) KS_Control case and (b) KS_ZDRCOL case, colored

according to their corresponding analysis time and showing the 30 m s21 vertical velocity contour line. Observed

tornado tracks are shown in black and gray, with gray tracks indicating observed tornadoes that fall outside of the

period of study.

FIG. 10. Composited remapped Z (15-dBZ contour in gray) and

analyzedZDR column depth (color shaded, inm) between 2200 and

0100 UTC in 10-min intervals for the 25 May 2016 case using the

detection criteria listed in Table 1. Observed tornado tracks are

shown in black and gray, with gray tracks indicating observed

tornadoes that fall outside of the period of study.
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FIG. 12. Composited 1–6-km AGL updraft helicity (m2 s22, red shading) at each grid point for (a),(c),(e)

KS_Control and (b),(d),(f) KS_ZDRCOL for the 0–1-h forecasts beginning at (a),(b) 2300; (c),(d) 0000;

and (e),(f) 0100 UTC. MRMS-derived 1–6-km AGL rotation tracks (black contours, 0.01 s21 shown) are

included for each 1-h period. The initial 1-km Z of each 1-h period is shown for reference (grayscale shading).
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FIG. 13. (left) Observed 1-km AGL Z from KTWX remapped to the ARPS grid, and corresponding forecasts

from the (middle) KS_Control and (right) KS_ZDRCOL runs for the 0–1-h forecast beginning at 0000 UTC (on

26 May) for the 25 May 2016 case. (a)–(c) The analysis at 0000 UTC, (d)–(f) 20-min forecast at 0020 UTC, (g)–(i)

40-min forecast at 0040 UTC, and (j)–(l) 60-min forecast at 0100 UTC. Observed tornado tracks are shown in black

and gray, with gray tracks indicating observed tornadoes that fall outside of the period of study.
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Overall scores are lower in the KS case, in part due to

the challenging nature of the forecast and in part due to

the aforementioned biases in Z (e.g., Figs. 14b,d,f)

and the extensive forward-flank downdrafts, which

generally exceed the biases seen for the OK case, par-

ticularly for later forecasts.

5. Summary and discussion

In this study, the potential for the assimilation of

polarimetric radar data observations via a cloud

analysis technique to aid in the spinup and forecast of

convection in storm-scale models is examined. Dif-

ferential reflectivity columns are ubiquitous features

of deep moist convection that are coincident with

updrafts and, thus, with areas of saturation and latent

heat release. Based on this premise, a ZDR column

detection algorithm is developed to identify ZDR col-

umns and 1) insert positive temperature and moisture

perturbations at these locations and 2) remove modest

amounts of moisture outside of these locations where

Z exceeds 10 dBZ. To evaluate this method, two cases

are analyzed: the 19 May 2013 tornadic supercells in

central Oklahoma and the 25 May 2016 tornadic su-

percell in north-central Kansas. For each case, two

runs were performed to gauge the impact of these

changes: a ‘‘Control’’ run using the original cloud

analysis, and a ‘‘ZDRCOL’’ run using the newly

modified cloud analysis that incorporates dual-

polarization radar data.

FIG. 14. As in Fig. 9, but for the KS case.
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The ZDR column detection algorithm is shown to re-

liably identify ZDR columns associated with convective

updrafts, and notable qualitative and quantitative im-

provements in the analysis and forecasts of convection

are seen in both cases. The analyzed updraft tracks are

more coherent and consolidated with less spurious

convection in the ZDRCOL runs than in the Control

runs. The short-term forecasts show a reduction in for-

ward speed and northward position bias of the main

updrafts, an issue encountered in many storm-scale

modeling experiments, with updraft helicity indicating

better agreement with radar-derived rotation tracks in

each case. The forecast Z fields also agree better with

observations in the ZDRCOL runs compared to the

Control runs, in turn leading to improved quantitative

verification scores and reduced frequency bias.

These experiments represent a basic proof-of-

concept investigation of the potential for assimilating

ZDR columns into storm-scale models and warrant

further study. However, drawbacks to the method ex-

amined here exist that have yet to be addressed. First,

while ZDR columns are fairly ubiquitous in deep con-

vection and generally collocated with updrafts, they

can be masked by the presence of hail or tornadic de-

bris (as discussed in Snyder et al. 2015) in the updraft,

resulting in the intermittent appearance (or complete

disappearance) of ZDR columns; in some cases, ZDR

columns may not be observed in deep convection at all.

Future work may examine the potential of using KDP

columns in a similar manner to alleviate these issues

(van Lier-Walqui et al. 2016), although the use of KDP

columns bears its own shortcomings (e.g., poor esti-

mation of KDP in areas of limited precipitation). The

use of ZDR columns to aid spinup of precipitation in a

NWP model may not be appropriate for weak con-

vective storms and stratiform rain where ZDR columns

are ill defined or may not exist. Only two cases were

analyzed in this study, with each being an archetypal

case of very strong convection with good radar cover-

age and prominent ZDR columns. The parameters both

for detecting ZDR columns and for applying moisture

and temperature increments were subjectively de-

termined and should undergo further refinement. Fi-

nally, only a single radar was assimilated for each case

because of lingering uncertainty in the optimal meth-

odology for merging polarimetric data from multiple

radars, although work is ongoing (J. Krause 2017,

personal communication) to implement the polari-

metric compositing method developed in Homeyer

(2014) and Homeyer and Kumjian (2015). The polari-

metric version of the newly developed Storm Labeling

in Three Dimensions (SL3D) algorithm (Starzec et al.

2017), which has demonstrated success in identifying

convective updrafts using a combination of weak-echo

regions, ZDR columns, and KDP columns, may also

prove particularly useful going forward. It is likely that

assimilating data from multiple radars would assist in

the spinup and analysis of storms from radial velocity

data beyond that examined in this work, as well as

alleviate radar coverage concerns for detecting ZDR

columns.

While being a relatively simple and efficient method

for assimilating Z, cloud analysis techniques may not be

optimal owing to their inherent empirical relationships

that can compromise initial adjustments in the model.

As temperature and moisture increments appear to play

large roles in aiding the spinup of observed storms in

storm-scale models, future work will seek to explore the

possibility of assimilating cloud analysis-derived tem-

perature and moisture increments based on detected

ZDR columns as ‘‘pseudo observations’’ in a 3DVAR

framework, similar to the work of Fierro et al. (2016) for

lightning data assimilation. Using a variational frame-

work to assimilate ZDR columns would allow for a more

balanced analysis/solution between the kinematic and

thermodynamic fields and, hence, for a smoother cycling

process.
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